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Chapter V1

Tdempotents




81, “he naturse of idempotents

The basic nolions concerning idempotents in alternative
algebras are Lhe same as those in associative algshras: we
can speak of orthogonal, supplementary, minimal, maximal, and

division idecmpotents.

We have all the concept surrcunding idempolents in alter-

native algebras that we do in associative algebras. An elenent

. . . 2 5 i . v
e is f(dempetent if & = ¢. Trivially 0 and 1 are idempolents;
an & £ 0, 1 is called a preper idempotent. (Somsiimes U is

nol considered an idempolent, but this restriction is incons

venient) . Gr+hg3anaJi+3 of idempotents is defined by
ed £ if ef

a family {e.} of idcmpotents is pairwise w@rthegenal if cach

ir i I . =, L ol 4 al e.g, = &, e
pair is orthogonzal, e, A €y for i # j, so thal e;e ik %3
A family of idempotents e,,*r*.8, in a nnital algsbra are
1 1 i
Supplewmentary if Lhey add up to 1, X B = 1
i=1 ~

&n important example of supplementary orthogonal idompotents

i i § i : . 7
are e and l-e. If = is an idempotent so is l-e since (l-e) =

' 2 . i S 2
] - 28 + 2" =1- 28 +e=1-e; it is orthogonal to e since
. 2 =
all~a} = f(l-gle = ¢ - e = 0; clearly ¢ and l-e are supplementary.

Thus we can hreak 1 apart inteo corthogonal idempotents. We



can also put two or more orihogonal idenpctents together:

if f{e .'*',eﬂ} are pairwige orthogonal idempolents their sum

ey iz an idempotent such that ee, = &; = z, e becaussa
= {7 : S o o _ Ao g x

ecj = {uei}a. = g.a¢. = o. by orthogonzality and a” = Loay = Te

J 3 1
We can parkially order the idempotents by writing

(W B

I

(1.1) e » £ 4fE ef = fe =L .

Notice that 1 > & > 0 for all e Since 92 = e wo have reflocx-
ivity & » &, clearly e > [ and £ > e imply e = f, and transi-
tivity e > £ > g = & > g follows from Moufangitivity eg =
e{fgqf} = {(ef)g}f = {fgl}f = g and dually ge = 9.

11lumination is cast on this ordering of idempotenls by
ohserving that a bigger idcmpotent is obtained by tacking on

an orthegonal piece to a smaller idempotent:

(1.2} & ¥ f FPL e =L #H ¢ [ar: E A q -
Clearly £ + g > f since (fig)f = £(f+g) = £2 = § if fg = gf = 0,
and convarsaly if e & £ thehe = £ +.g where g = e - [ has

P e? e~ fet PP me=204F (lyeas ) ma-f=49

and fg = fe - Fd = f - £ =0 (by fe = £) and dually, so gz = .q

and fg = gf = 0.
A maximal (or principel ) idempotent is one which is maximal
relative to this ordering; equivalently, in view of (1.2),

one which has no nonzers idempotent orthogonal to it. TIf it



exists, 1 is the unigue maximal idempotent. Usually one
considers maximal idempotents only in order to prove an algebra
is unital.

A minimal (or primitive ] idempotent is one which is
minimal among nonzero idempotents relative to the ordering;
by (1.1) this is eguivalent to the condition that =Ae contain
no idempotents £ £ 0, e (since f € ele iff ef = £ = ). We
do not count ¢ as a minimal idempotenl.

From the point cf view of strucbure theory the kind of
idempotents we like best are tae division jdempetents [or
cemplately primitive idempotents), those idompotents & tor
which ehe is a division algebhra. Since division algsbras
contain no preopesr idempotenls (the only invertikble idempolent
iz 1), division idempolents are always minimal: completely
primitive =% primitive., The Minimal Quadratic Tdecal Thzoren

TV. 5.3 furnishes a host of division idempolents.

1.3 Example. In an associative matrix algebra Mn{ﬂ} For

a division ring, the diageonal idempotents c., 4re division
idempotents. If D is not a division algebra but still has no
proper idempotcnts (for axample, if W is a nil ideal in D with
o/ ¥ Ay then in MH{D} the e,y are 21111 minimal hubk no longer

division idempotents. B

1.4 Example. 1In & Cayley algcbra over a field ¥, = is a
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proper idempotent 1Ef wie) = 1 and ni{z) = 0, in which case
e & = te, 30 all proper idempotents are divisgion idempotsnts.

{See VII. 4.21). @

1.5 Example, Having idempotents is good, but one can have

too wuch of 2 gead thing., An alternalive algebra iz Tesleon
; o - 2 .

if all its elements are idempctent, x = % for all =%. You
have undoubtedly already seen examples of Hoolean associative

algebras. Actually, every Boolean alternative algehra 1s

aulomatically associalive:

1.6 (Boolean Theorem) » Boolean alternative algsbra is com-

mutalbive and accociative.

. s . 2 2
Proof. Lincarizing xz = x gives xy + ¥x = tx+yj? - T =y

2

= (x+y) - % - ¥ = 0; in particular, 2x = 2x xx + mxn = 0,

sn & has characteristic 2 {2A = 0). Then xy - yx = + ¥X S0
A iz commutative.
We have =cen in IT. 4.1 that a commutative alternative al-

gebra is associative if % € & or if there are no nilpolant

elements: both of these conditions are m=at in ocur cass, so A

Il
"

is associative. We can also argue directly: Dbecause X

0 for all x, by Middle Bumping all asgocliators

2 ; -
[z°,v,2] = xec[x,y,z] = 0 vanish.

and el

[:{EY!E]



VI. 1.1 Problem Seton Primitive Idempotents

We want to investigate the subalgebra ehe when ¢ 15 a
primitive idempotent.

1., If z iz nilpotent, show no multiple az can be invertible.
If =z, w are nilpotent show z+w # 1 (but give an example
to show 24w can bhe invertibkle).

2. Prove the Proposition. If A is an alternative algebra in

which =ach elensnt is &ither invertikle or nilpotent, then

the set 2 = {z € A|z is nilpotent} = {2z € &lz is net in-
vertible}l forms an ideal in A, and A/Z is & division
algebra,

Recall thab an algebra A in which the non-units form an
ideal N iz called a leeal algehra; if N is nil, A is called
5+Fﬂh513 lacal The proposition says thal an algebra with
only invertible or nilpotent elaments is strongly local.

3. B8how that if 1 is a primitive idempotent in an algsbraic
alternative algebhra A wver a Field, Lthan sach clement of

A is sither invertible cr nilpotent, so A is strongly local.
4. Prove the Proposition. If & is a primitive idempolent in

an algebraic altesrnative algebra A over an algebraically

closed field ¢, then ele = &g + % [or 2 3 nil idezal in elo.
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vI. 1.2 Problem S=t: Two Lemmas for Tdempotents

Roughly, we want toc show that if xy is idempotent so 1s

and if =(yz) is idempotent se is ({x=y)=z. This can't be

guite right; even in associative algebras xy idempotent can't,

force yx idempotent.

1.

i

In an associative matrix algebra find x, ¥ with xy idem-
potent but not vx. (It iz cheating te choosc xy = 01)
Shaow that if =y = & is idempolsnl Lhere is another idem-

polenl £ and elements x', ¥' with z'v' = e, y'zx' = [ (even

'y = xy' = e, yu' = y'x = £).
(xy, wx Lemma for Tdempobenbks) If xy = ¢ is an idempotent
and either ex = x or ye = v, then yx = f is alsc an idem-

potent. (A typical exanple of the above would be W= ey

)i

¥ o= e in a matrix algebra, xy = e, and yx =

i
In a split Cavley algebra, find x,v,z with x(yz) ildem-
poktanl but not (xy}z.

Show that if x(yz)'= ¢ is idempotent then there is another

idempotent £ and an elemsnt x' with ='(yz} = ¢, (x'ylsg =

{(x(yz),(xv)z Lemma for Tdempobenkts) If x(yz) = e 1s

idempotent and ex = x then (xy)z = f is alsec an idempotent.
A (1} (2} g =13
(& tyoical example would be ® = @y ¥ T epa7y z €10

: ; ; 1
Cayley matrix units, so x{ysl = e{é]{Efi}E{;)} = Eiijeilj

. oo f3y (3 _ .
€y {xy)z = es1'815 = egy)-



VI. 1.3 Preoblem 3et on Zorn Algebra

Lo in the associative caswe, an altsvrnaetive algebra o

is called a (|eFft) Zevn ﬂjﬁghrl if for each % € 4 epithex

% is nilpotent or there is an idempotent left multiple

g = yx # 0. Thus except for the nil part, a Zorn algebra is

full of idempotents.

1, From Lhe associalive case, or from the xy, ¥x Lenma for
Tdempoteonts, show that left Zorn and righbk Rorn are
equivalent, so ane speaks simnly of Zarn algebras,

2. Show Lhalb in a Zern algchra any element = is either pro-
perly nilpotent or else some multiple vx = e # 0 is idem-—
potent.,

3. Show that in a Zorn algebra the Jaccbhson and nil radiecals

coincide, Rad & = {z|z is properly nilpotent}.

4. Bhow that if x=z e for z nilpotent, & 2 central idempa-
tent, then e = 0. Conclude that if all idempotenls e in
a %2orn algebra A are central then Rad A consists of all
nilpotent =lements.

5. Show thalk if a Zorn algebra A is prhnnrj (the only idem-
polents are 1 and 0), then A is a strongly local algebra;
the non-units are the nilpotent cleoments, and form the
unigue maximal ideal.

6. Any ideal B<da in a Zorn algebra A is itself a Zorn al-

gepra, If A& is vorn and B is a pil ideal, ASB iz still



8.

k=8

LOrn. (Even in Lhe associative case, a general guotient

A/B need naot again be Zorn.)

Tf @ is an idecmpotent in a Zorn algebra i, show eds is

AOTT.

Use #3 to show directly Rad(B) = BM Rad(i)

for any ideal

B end Rad(ehz) = ehefy Rad{a) ftor any idempotenbk = in a

Zorn algsbra A. Conclude that if A is semisimpls Zorn

a0 15 any ideal B or Peirce sunalgesbra chc.

for radicals.)

(Sze Chapler V

If = iz & maximal (= principal) idempotenl in & semisimple

Yorn algebra, show e = 1.
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Vi. 1.4 Problem Sct on Regular Algebras

Recall that an element x is Feﬁular if ¥ = xyx for some

Algebras in which all elements are regular are rich in

idempobtents.

1-

Tf 2 econtzins no nilpotent elements, show every idempotent
lics in the center C(A).

If all idempotents of A lie in the cenbexy, show that i
¥ £ A is regular there is ¥ € A with xv = ¥yx = & fer

w¥s = ®: 1n this cass show

some idempotent = with ex
Ax = Ae = sA = xA is a two-sided ideal. If A is regular
wilh all idecmpotents central, show all one-sided ideals

are two-sided.

If A is regular with unit 1 which is 2 primitive idempotent
show & is .a division algcbhbra,

Suppose A 15 rcegular and all idempotents lie in the center.
Show for each x # 0 there is a maximal (left = twe-zidad)
ideal Mx nissipng ®, and ﬁfsx iz a divizion algebra.

Prove the Theorem of lorsythe-daCoyv: A regular alternalive

algebra without nilvetent elements is a& subdirsch sum of
division algebras.

If for each x € A there is an intsger n = n(x) > 1 with
xn{x]

%, show & is regular without nilpotent elements.

Prove the Jacobson Commutativity Thearem for Alternative

Algebras. hny alternative algebra each of whose elemenls



1-1¢

x ‘ y X > .
x satisflies a relation = Bt = ¥ for scome ni{x)] > 1 1is

cormutative and assocliative (indeed a subdircct sum of

ficlds).



VI. 1.5 Preoblem Set on Kinds of Regularity

An element =& A is rﬁgulaf if x = xyx for soms ¥y,

. I 1
T - teguler (n for Tower) if k= x yxn

for some n and some ¥

(that is, if some power is regular), and strengly.( lefi)

FEﬁulan if x = xzy for some y¥. An algebra is rEﬂ;ﬂqr (resp.

¥ = PQEUHLT,SﬂTnngb fegular) if all its elements are.

1. 8hew & ([left) strongly regular slement cannot be niluotent
(can it be guasi-invertihle?), so a strongly regular al-
gebra contains no nilpotents. Show that when A contains
no nilpolenlks x = ¥y impliss x = axyx - yxg, 50 left and
right strong regularity are eguivalent, and both imply
orainary (weak) regularily.

2. Tf A has doc on all subspages aﬂﬁ[a]an or all a Aa” (in
particular, if A is algehraic over a field or weakly
Artinian) then it is w-regular.

3. Concluds Strong Regularity =2 Regularity = 1-Regularity =
Zornity.

4, Show ths following ars eguivalent: (i) A& i= strongly
regular, {ii) A is regular without nilpotenls, (iii) A
is regular with all idempotentg central, (iv}) A is 7=
regular and semisimple with all idempotents central.

5. Show thalk if x € A is reqular (resp. 7m-regular, strongly
regular) sc is any homomorphic image of x. If x is regular

{etc.) in A and lies in an ideal B or subalgebra sde, show
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¥ is regular {(etc.) in B or elfe. Concluwle that if & is
regular (resp,. r=regular, strangly regular), =0 1s avary
homomorphic image F(A}, svery ideal B =1 A, and every
Peirce suzalgehra ede.

Show that a central clement is regular iff it is strongly
regular. Show that if a contral clement o € C{A) is
roegular in A it is regular in the center C(A). Conclude
Lhal the center of & regular (resp. 7-regular, strongly
reqular) algebra is again o Lhe same Lyps.

Prove MoUoy's Lemua for alternative algsbras: 1if x - xvx

2 . i : . 2 2 .
is regular Lhen x itsell is reqular, and il = - 2 wyx" =

strongly regular Lhen = ibkself is skrongly regular.

Show that the various ivpes oI regularity are radical
prepertiss, =0 every saluebra containe a maximzl p-regular
ideal wi{A), such that 2/p(A) contains no p-ragular ideals

{p = ¢, u, or strongly).



